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Abstract
Interface optical phonons are studied in the case of a quantum dot (QD)
with prolate and oblate spheroidal geometries within the dielectric continuum
approach. We considered CdSe or CdS QDs imbedded in a host material which
is modelled as an infinite medium. The surface optical phonon modes, the
corresponding frequencies, and the electron–phonon interaction Hamiltonian
are reported. Comparison is made with previous works which only considered
strictly spherical dots. We conclude that deviations from the perfect spherical
shape could be responsible for observable physical effects in Raman spectra.

1. Introduction

The theoretical investigation of polar optical vibrations in small-size crystals was initiated
a long time ago [1] by applying a continuum dielectric model valid in the long-wavelength
limit. In this approach, both bulk-like oscillations and surface modes are included in the
study of the vibrations of finite samples. The quantum version of such oscillatory modes are
the well-known longitudinal optical (LO) and transverse optical (TO) bulk-like phonons and
the corresponding surface optical (SO) phonons. Weakly polar semiconductor compounds,
in the form of slabs and spheres, were considered in pioneering works on the subject. With
further development of sophisticated growth techniques, semiconductor systems of nanoscale
dimensions became available—the well-known quantum wells, quantum well wires, quantum
dots (QDs), etc.

In the present work we shall focus on QD structures, where all three spatial dimensions
are strongly reduced to the nanometric scale. The important technological progress of recent
years has led to processes of fabrication and thermal treatment that can produce QDs with
good size distributions [2,3]. On the other hand, using microluminescence and micro-Raman
measurements, these systems can be studied at an almost individual level [4–7].

We shall be interested in polar QDs of the prototypes CdSe, CdS, CdTe, PbS, etc. They
are imbedded in a host matrix which may be modelled theoretically by an infinite dielectric
medium. In the late 1980s and early 1990s several works were published on the subject where
QDs of this nature were used for the investigation of polar optical vibrations [8–12]. In these
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works the QD is usually treated as a sphere and the vibrations are considered along the lines of
the long-wavelength dielectric continuum approach. Most of them have also investigated the
Fröhlich-like electron–phonon coupling Hamiltonian3. In addition to the usual model of QDs
with spherical shape, it is important to study the effects of the deviation from this geometry on
the phonon modes. In fact, there is experimental evidence, particularly from Raman scattering
spectra, that several physical properties of the QD systems may be ascribed to their geometrical
shape—more specifically, to the non-sphericity of the QDs [2,7,10]. For instance, the electronic
energy levels and wavefunctions of spheroidal QDs have been examined [13] and observable
deviations from the perfect spherical case were reported. Moreover, nowadays CdSe rod-
shaped nanocrystals are synthesized with radii ranging from 1.5 to 3.3 nm and length from 4
to 20 nm [14, 15].

In the present paper we consider the polar optical vibrations of a QD with ellipsoidal
geometry, in both prolate and oblate forms, within the framework of the dielectric continuum
approach. We have found that deviations from the purely spherical geometries introduce
significant changes in the SO phonon dispersion laws, eigenstates, and also in the electron–
phonon interaction Hamiltonian, which is derived here in terms of the geometrical spheroidal
parameters that characterize the QD shape. Our approach should provide an acceptable
description for the SO phonons of a spheroidal QD as well as the electron–phonon interaction
Hamiltonian, whenever the phonon wavelength λp is smaller than the QD dimensions. In the
opposite case, a different treatment should be applied to the confined phonons if we look for
more reliable results. For instance in [16, 17] a better description of polar optical phonons in
the long-wavelength limit is achieved, by taking into account the coupled electromechanical
character of the oscillations in the starting equations and in the matching boundary conditions.

The paper is organized as follows. In section 2 we give a brief summary of the applied
dielectric continuum approach. Section 3 is devoted to the discussion of SO phonons for QDs
with spheroidal prolate geometry and where we included a rigorous deduction of the electron–
phonon Hamiltonian for the system. In section 4 the same analysis is made for the case of
a QD with spheroidal oblate geometry. A discussion of the results obtained is presented in
section 5.

2. General equations

For the sake of clarity, let us briefly summarize the fundamental equations of the dielectric
continuum approach to the study of the optical phonon modes. They have been extensively
discussed in the literature on the subject [1, 8–12]. The Born–Huang equation of motion is

ẅ = −ω2
T w +

√
(ε0 − ε∞)

4π
ω2

T E, (1)

where the polarization field P is given by

P =
√

(ε0 − ε∞)

4π
ω2

T w +
ε∞ − 1

4π
E. (2)

Here w = √
Nµu and u is the relative displacement between a pair of ions of reduced mass

µ in a crystal of concentration N (the reciprocal of the unit-cell volume). The other quantities
are the electric field E, the transverse-limit bulk frequency ωT , and the static (high-frequency)

3 The word ‘vibron’ is used by some authors in place of ‘phonon’ because, to a certain extent, the QD resembles
a molecule. In particular, the QD ‘phonon’ does not involve the corresponding momentum h̄k and is somewhat far
from the standard phonon concept.
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dielectric constant ε0 (ε∞) of the polar material. We assume the validity of the Lyddane–
Sachs–Teller relation ω2

L/ω2
T = ε0/ε∞.

Considering the electric field to satisfy the quasi-static Maxwell equations, we must require
that the induction field D = ε(ω)E = E + 4πP fulfils the Gauss equation ∇ · D = 0. By
using the relation E = −∇ϕ, we arrive at the main equation in the dielectric approach:

ε(ω) ∇2ϕ = 0. (3)

For all quantities in the above equations, the harmonic time dependence f (t) ∼ exp(−iωt)

is implicit. Thus, the frequency-dependent dielectric function ε(ω) is easily derived as

ε(ω) = ε∞
(ω2 − ω2

L)

(ω2 − ω2
T )

. (4)

The SO phonons involve electric potentials that satisfy the Laplace equation ∇2ϕ = 0.
Therefore one of the possible solutions of equation (3) is ε(ω) �= 0 and ω �= ωL. The boundary
condition, associated with the continuity of the normal component of D at the interface between
two different media, leads to

ε1

[
∂ϕ1

∂n

]
S

= ε2

[
∂ϕ2

∂n

]
S

. (5)

Finally, we just add a complementary relation, which will prove rather useful later, given by

∇ϕ =
[

ωT

ε∞ − ε(ω)

]√
4πNµ(ε0 − ε∞)u. (6)

3. Prolate spheroidal quantum dots

The prolate set of spheroidal coordinates ξ , η, φ are related to the rectangular Cartesian
coordinates through the equations

x = b
√

(ξ 2 − 1)(1 − η2) cos φ,

y = b
√

(ξ 2 − 1)(1 − η2) sin φ,

z = bξη,

(7)

where ξ � 1, −1 � η � 1, and 0 � φ � 2π . The equation ξ = constant describes an
ellipsoid of revolution where the z-axis (the axis of revolution) is taken along the ellipsoid
major axis, with 2b being its interfocal distance. Other details concerning these curvilinear
coordinates can be found elsewhere (see, for instance, [18, 19]).

Let us consider the ellipsoidal surface defined by ξ = ξ0 = constant. In our model, the
inner region defined by 1 � ξ � ξ0 is one of the polar semiconductors mentioned above, with
a dielectric function ε(ω), where ω is the eigenfrequency corresponding to the SO oscillation
modes of the spheroidal dot. In the exterior region, defined by ξ � ξ0, we shall consider the
infinite medium with a dielectric constant εD independent of the frequency.

The Laplace equation is separable in this spheroidal prolate coordinate system and the
solution for the model just described can be found as [18, 19]

ϕ< = AlmRm
l (ξ)Ylm(η, φ), ξ � ξ0,

ϕ> = Alm(Rm
l (ξ0)/Q

m
l (ξ0))Q

m
l (ξ)Ylm(η, φ), ξ � ξ0.

(8)

Notice that the electric potential is already continuous at ξ = ξ0. The functions Rm
l (ξ) and

Qm
l (ξ) are defined in [19] and we shall give them here in terms of the hypergeometric function

as

Rm
l (ξ) = (2l)!(ξ 2 − 1)m/2ξ l−m

2l l!(l − m)!
F

[
m − l

2
,
m − l + 1

2
,

1

2
− l,

1

ξ 2

]
, (9)
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and

Qm
l (ξ) = 2m(l − m)!
(1/2)(ξ 2 − 1)m/2


(l + 3/2)(2ξ)l+m+1
F

[
l + m + 1

2
,
l + m + 2

2
, l +

3

2
,

1

ξ 2

]
. (10)

Here Ylm(η, φ) are the usual harmonic spherical functions and the angular momentum quantum
numbers have values l = 1, 2, 3, . . . and |m| � l. The functions Rm

l (ξ) diverge as ξ l when
ξ → ∞ but are convergent at ξ = 1. The functions Qm

l (ξ) converge to zero as ξ−l−1 when
ξ → ∞ and diverge logarithmically at ξ = 1. For ξ0 = 1 the ellipsoid is deformed to one
point. Thus we shall assume ξ0 > 1.

The other boundary condition at ξ = ξ0, given by taking ε1 ≡ ε(ω) and ε2 ≡ εD in
equation (5), defines the quantity

f P
lm(ξ0) = ε(ω)

εD

≡
(

d

dξ
ln Qm

l

∣∣∣∣
ξ0

)(
d

dξ
ln Rm

l

∣∣∣∣
ξ0

)−1

. (11)

These universal parameters f P
lm are independent of the nature of the constituent materials and

also do not depend on the normalization of the functions Rlm and Qlm, but do depend on the
QD dimensions through ξ0 (see the appendix). Using equation (11) we obtain, after a little
algebra, the eigenfrequencies of the SO phonons in terms of these parameters as

ω2
lm

ω2
T

= ε0 − εDf P
lm(ξ0)

ε∞ − εDf P
lm(ξ0)

. (12)

Notice that, in contrast to the purely spherical case, the eigenfrequencies depend on two
indices l, m and also on the parameter ξ0 (analogous to the sphere radius of the spherical
geometry). The size dependence of SO phonon frequencies is a very peculiar feature of the
spheroidal QD. It is easy to show, for ξ0 → ∞, that equation (12) reproduces the corresponding
eigenfrequencies of a purely spherical QD [1, 10]:

ω2
l

ω2
T

= ε0l + εD(l + 1)

ε∞l + εD(l + 1)
. (13)

In order to obtain the quantum operators associated with the phonon field let us, as a first
step, introduce the quantum operator û corresponding to the classical relative displacements
of the pair of ions. We propose that

û = u0 ∇[Rm
l (ξ)Ylm(η, φ)]âlm, (14)

where âlm is the annihilation operator for the SO phonon mode described by the suffices l, m.
As usual, these operators obey bosonic commutation relations and the quantity u0 is a constant
to be determined below. Let us now recall that the classical (kinetic) energy associated with
the SO vibrational field is given by (Nµ/2)

∫
u̇2 d3r , where the volume integration must be

performed over the whole region inside the ellipsoid. The corresponding quantum Hamiltonian
for free SO phonons will be defined by

Ĥ0 = 1
4Nµω2

lm

∫
[û† · û + û · û†] d3r. (15)

By writing equation (15) we have ensured the hermiticity of Ĥ0. The substitution of
equation (14) into (15) leads to

Ĥ0 = 1
2Nµω2

lmu2
0

(∫
∇[Rm

l Y ∗
lm] · ∇[Rm

l Ylm] d3r

)
[â†

lmâlm + 1
2 ]. (16)
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The integral in equation (16) can be rewritten in the form∫
ellipsoid

∇χ∗ · ∇χ d3r =
∫

S

χ ∇χ∗ · dS −
∫

ellipsoid

χ ∇2χ∗ d3r. (17)

In equation (17) the volume integral at the rhs is zero because ∇2χ∗ = 0 (Laplace equation).
The surface integral, taken over the ellipsoid’s surface S with ξ = ξ0, is easy to evaluate and
the result is given by∫

ellipsoid

∇χ∗ · ∇χ d3r = b(ξ 2
0 − 1)Rm

l (ξ0)

[
d

dξ
Rm

l

]
ξ0

≡ bglm(ξ0). (18)

Thus, the Hamiltonian of equation (16) can be rewritten as

Ĥ0 = 1
2Nµω2

lmu2
0bglm(ξ0)(â

†
lmâlm + 1

2 ). (19)

In order to determine the constant u0 we just require that the SO phonon Hamiltonian
assumes the standard harmonic form Ĥ0 = h̄ωlm(â

†
lmâlm + 1

2 ). Therefore,

u2
0 = 2h̄

Nµωlmbglm(ξ0)
. (20)

From equations (14) and (20) we obtain the Hermitian operator û, after the substitution
û → (û† + û)/2, as

û(r) =
∑
lm

√[
h̄

2Nµωlmbglm(ξ0)

]
(∇[Rm

l Ylm]âlm + H.c.) (21)

where ‘H.c.’ stands for ‘Hermitian conjugate’. The operator associated with the electric
potential ϕ̂ may be obtained from equation (6) by applying (21) and we find

ϕ̂(r) =
∑
lm

ε∞ωL

ε∞ − εDflm(ξ0)

[
2πh̄

ε∗bωlmglm(ξ0)

]1/2

[Rm
l (ξ)Ylm(η, φ)âlm + H.c.], (22)

where 1/ε∗ = 1/ε∞ − 1/ε0 and equation (12) was also used. Equation (22) represents the
electric potential operator for ξ � ξ0. The expression for ϕ̂(r) can be easily extended to the
whole space in an obvious way and the result is

ϕ̂(r) =
∑
lm

ε∞ωL

ε∞ − εDflm(ξ0)

√
2πh̄

ε∗bωlmglm(ξ0)
[Fm

l (ξ)Ylm(η, φ) âlm + H.c.], (23)

where

Fm
l (ξ) = Rm

l (ξ), ξ � ξ0,

Fm
l (ξ) = [Rm

l (ξ0)/Q
m
l (ξ0)]Q

m
l (ξ), ξ � ξ0.

(24)

Hence, the electron–SO phonon interaction Hamiltonian is rigorously given by

Ĥe−ph(r) = −eϕ̂(r). (25)

4. Oblate spheroidal QDs

Let us now consider ξ, η, φ to be oblate spheroidal coordinates which are related to orthogonal
Cartesian coordinates through the equations [18, 19]

x = b
√

(ξ 2 + 1)(1 − η2) cos φ,

y = b
√

(ξ 2 + 1)(1 − η2) sin φ,

z = bξη,

(26)
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where ξ � 0, −1 � η � 1, and 0 � φ � 2π . In terms of these coordinates the Laplace
equation is also separable. The equations involving η and φ are completely coincident with the
corresponding equations in the prolate spheroidal coordinate system. The equation involving ξ

is somewhat different, but can be reduced to its corresponding prolate case by the transformation
ξ → iξ . Hence, the equation involving ξ has the same solutions as in the prolate case, but the
special functions appearing there now will depend on iξ . However, in our treatment we shall
introduce slight changes to the normalization, namely

Rm
l (iξ) = (2l)!

2l l!(l − m)!
(ξ 2 + 1)m/2(ξ)l−mF

[
m − l

2
,
m − l + 1

2
,

1

2
− l, − 1

ξ 2

]
, (27)

since this solution becomes divergent as ξ l when ξ → ∞. For similar reasons, the other
function

Qm
l (iξ) = 2l l!(l + m)!

(2l + 1)!
(ξ 2 + 1)m/2(ξ)−l−m−1F

[
l + m + 1

2
,
l + m + 2

2
, l +

3

2
, − 1

ξ 2

]
(28)

will converge to zero as ξ−l−1 when ξ → ∞. Notice that, despite these slight differences in
the normalization, we are applying the same notation as was used in the prolate case.

The equation ξ = ξ0 = constant defines the surface of an oblate ellipsoid. Now, the
solutions of the Laplace equation can be written as

ϕ<(r) = AlmRm
l (iξ)Ylm(η, φ), ξ � ξ0,

ϕ>(r) = Alm

Rm
l (iξ0)

Qm
l (iξ0)

Qm
l (iξ)Ylm(η, φ), ξ � ξ0,

(29)

where the continuity of ϕ at ξ = ξ0 is already ensured. Thus, the second boundary condition,
equation (5), defines the equivalent set of universal parameters for the oblate case as

f O
lm(ξ0) = ε(ω)

εD

=
[

d

dξ
ln Qm

l (iξ)

∣∣∣∣
ξ0

][
d

dξ
ln Rm

l (iξ)

∣∣∣∣
ξ0

]−1

. (30)

An identical procedure allows the determination of the corresponding SO phonon
eigenfrequencies in oblate geometry:

ω2
lm

ω2
T

= ε0 − εDf O
lm(ξ0)

ε∞ − εDf O
lm(ξ0)

, (31)

where the modes ωlm obey an equation formally analogous to equation (12), as one could guess
from simple arguments, depending on the parameters f O

lm(ξ0). The parameters f O
lm(ξ0) have

the same general properties as those discussed in the prolate case, but their dependence on ξ0

is clearly different (see also the appendix).
In deriving the corresponding operators û and ϕ̂ of the SO phonons for oblate spheroids,

we must follow steps analogous to those already made in the prolate case. For the sake of
brevity, we just write the final results:

û(r) =
∑
lm

[
h̄

2Nµωlmbg̃lm(ξ0)

]1/2

[∇[Rm
l (iξ)Ylm(η, φ)]âlm + H.c.], (32)

and

ϕ̂(r) =
∑
lm

ε∞ωL

ε∞ − εDf O
lm

[
2πh̄

ε∗ωlmbg̃lm(ξ0)

]1/2

[Rm
l (iξ)Ylm(η, φ)âlm + H.c.], (33)
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where g̃lm(ξ0) = (ξ 2
0 + 1)Rm

l (iξ0)[ d
dξ

Rm
l (iξ)]∗ξ0

. Equation (33) is valid just for ξ � ξ0. As in
the case of the prolate ellipsoid, we extend the electric potential operator to the whole space:

ϕ̂(r) =
∑
lm

ε∞ωL

ε∞ − εDf O
lm

[
2πh̄

ε∗ωlmbg̃lm(ξ0)

]1/2

[F̃ m
l (iξ)Ylm(η, φ)âlm + H.c.], (34)

where

F̃ m
l (iξ) = Rm

l (iξ), ξ � ξ0,

F̃ m
l (iξ) = [Rm

l (iξ0)/Q
m
l (iξ0)]Q

m
l (iξ), ξ � ξ0.

(35)

We have found it convenient to define the function F̃ m
l , instead of the function Fm

l already
defined in equation (24), due to the slight differences between the normalizations of the
corresponding functions Rm

l and Qm
l . The electron–phonon Hamiltonian is again given by

equation (25) with the electric potential operator taken from equation (34).

5. Discussion of the results

In order to get a deeper understanding of the theoretical results presented in the foregoing
sections, let us consider the particular case of a CdSe QD imbedded in an infinite dielectric
medium. The applied physical parameters are the same as in [7]: ωT = 165.2 cm−1, ε0 = 9.53,
ε∞ = 5.72, while for the exterior medium we take εD = 4.64.

Let us analyse the dependence of the phonon frequencies ωlm on the QD dimensions and
geometrical shape. In figure 1(a) we present the calculated values of ω2

lm, measured in units
of ωT , as a function of 1/ξ0 for quantum numbers l = 1, 2 in QDs with prolate shape. The
possible SO phonon modes are explicitly indicated in the figure. The dotted lines show the
corresponding values of eigenfrequencies for the strictly spherical case. It can be seen from
the figure and from the appendix that the phonon frequencies follow the same trends as the
corresponding parameters f P

lm. The spherical modes can be asymptotically achieved in the
limit ξ0 → ∞, as expected. The other limiting value ξ0 → 1 can also be attained.

In figure 1(b) we show the same calculated values of ω2
lm for a QD with oblate geometry.

For QDs with oblate shape, the frequencies follow the same trends as the parameter f P
lm and,

therefore, display the regularity which is in contrast with the smooth dependence observed in
the prolate case. The different geometry of the oblate ellipsoid leads the frequencies of the
various modes to exhibit sharp contrast with those of the prolate ellipsoid. For the oblate case
it was necessary to consider a wider interval of variation for the parameter 1/ξ0 (up to 40).
Theoretically this parameter ranges up to infinity. However, the higher the value of 1/ξ0, the
less likely the fabrication of the QD structure with dimension ξ0. It is interesting to note that
each frequency for a purely spherical QD is now split into various frequencies, according to the
restriction m � l. Also the separation between the group of (2m + 1) frequencies will depend
on the QD dimensions through ξ0. This is a very peculiar result, intrinsic to the spheroidal
geometry. The frequency splittings, in general, are not very large but still can be found in a
range of experimental resolution—for instance, in micro-Raman experiments. Let us remark
that the frequency splittings between the different modes for an oblate ellipsoid are of the same
order of magnitude as for the prolate case. However, the sign of the splitting for certain modes
can be different. For example, the frequencies for the (1, 0) mode in an oblate QD are higher
than the frequencies in the (1, 1) mode. It is convenient to introduce a parameter r , defined as

the ratio of the ellipsoid semi-axes, and given by r = ξ0/

√
ξ 2

0 − 1 (r =
√

ξ 2
0 + 1/ξ0) for the

prolate (oblate) ellipsoid. According to experimental observations [20] the values of the ratio
are likely to be found in the range 1.1 � r � 1.3, and it is a measure of any slight deviation
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Figure 1. (a) Dependences of the squared frequencies, ω2
lm in units of ω2

T , on the QD size, 1/ξ0,
for prolate ellipsoidal symmetry; (b) dependences of the squared frequencies, ω2

lm in units of ω2
T ,

for the oblate ellipsoidal symmetry. In both cases the dotted lines correspond to the strict spherical
case. We use l = 1, 2 and all possible values of m in each case.

from sphericity. It should be noted that differences between the prolate and the oblate cases
are present even for values of r very close to unity (when the QD is very near the spherical
case). This peculiar behaviour is significant and indicates the sensitivity of the SO phonon
frequencies to changes in the QD geometry. If we focus on the (1, 0) mode, we observe that
the corresponding eigenfrequency ω10 is lower (higher) than that for the spherical case in the
prolate (oblate) case. On the other hand, the frequency ω21 is very near the corresponding
frequency in the spherical QD for the prolate ellipsoid, but in the oblate ellipsoid it is clearly
larger. We must note that such frequency differences between the prolate and the oblate
cases are practically independent of the semi-axis ratio r and should be interpreted as a direct
consequence of the QD topology. Let us remark that higher deviations from the spherical
geometry are in principle possible, a point that will depend on the fabrication technology and
requires further analysis.

In figure 2 we show the values of ω2
lm (in units of ωT ) as a function of 1/ξ0 but taking l = 3.

In figure 2(a) we present the prolate case while the oblate case is depicted in figure 2(b). The
dotted lines, as before, represent the frequencies for the strictly spherical QD. As is explicitly
shown in the figure, we are using different scales for the parameter 1/ξ0 corresponding to the
prolate and the oblate cases. We must also remark that, for a higher value of l, the splitting
magnitude decreases.

In figure 3 we depict the dependence of the eigenfrequencies ω2
lm (l = 1 and 2) on the host

material obtained by changing its dielectric constant εD for QDs with a fixed value of ξ0 having
both the prolate (figure 3(a)) and oblate (figure 3(b)) geometries. We have considered a rather
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Figure 2. (a) Squared frequencies ω2
lm (in units of ω2

T ) as a function of 1/ξ0 for l = 3 and all
possible values of m for the prolate ellipsoid; (b) the same, but for the oblate ellipsoid. The dotted
line represents the strict spherical case.

wide range of values for εD since, as discussed in [21], if the host material is ferroelectric,
this constant can reach values as large as 5000. These systems appear to have technological
importance [21]. The dotted curves in the figure refer to the modes for the strictly spherical
case. We have fixed ξ0 = 2.4 corresponding to r = 1.1 in the prolate case and r = 1.08
in the oblate case. Notice that all curves approach asymptotically the frequency ωT for host
materials with large dielectric constant εD . This limit can also be obtained analytically from
equations (12) and (31). Hence the splittings between different frequencies will decrease for
host materials with large εD . Under experimental conditions, the differences between the SO
phonon frequencies can be resolved just for relatively small values of εD .

In figure 4(a) we present the radial part of the electron–phonon interaction Hamiltonian
eϕlm, as a function of ξ , created by the SO phonons in prolate geometries. The quantity eϕlm is

plotted in units of eϕ0 =
√

2πe2h̄ω2
L/ε∗bωT , for l = 1, 2 and for all possible m. The potential

is peaked at ξ = ξ0 (in the figure we fixed ξ0 = 2.4), in correspondence with the interface
character of the phonon modes. The slopes of the curves at the peaks are not continuous due
to the different dielectric constants of the media involved. The term for l = 3 was not shown
since the corresponding interactions are quite small (a thousand times lower) and off the scale
of the figure. Hence, the modes exhibiting a stronger contribution to the electron–phonon
interaction are those with the two smaller values of l = 1, 2. In figure 4(b) we show the
same plots for the oblate QD case. From these figures we can obtain a qualitative insight into
the electron–phonon interaction and its strength. Actually, the angle-dependent part of the
potential is also important and can change the sign of the interaction.
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Figure 3. (a) Squared frequencies ω2
lm (in units of ω2

T ) as a function of εD/ε∞ for l = 1, 2 and
all possible values of m for the prolate QD. In the inset the interval 0.3 � εD/ε∞ � 1 is shown.
(b) The same, but for the oblate QD. In the inset the interval 0.3 � εD/ε∞ � 1.5 is shown.

A final and most interesting point concerns the selection rules for phonon-assisted first-
order Raman scattering in spheroidal QD systems. SO phonons have been invoked in order to
explain a certain small ‘shoulder’ structure experimentally observed on the lower-energy side of
the main Raman peak [7,10]. However, it has been proved that the first-order Raman selection
rules forbid the corresponding transitions for purely spherical QDs [16]. On the other hand,
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Figure 4. (a) The radial part of the electron–phonon interaction eϕlm in units of eϕ0 (see the text)
as a function of ξ for l = 1, 2 and all possible values of m. It is clearly peaked at the QD surface
(with ξ0 = 2.4). (b) The same, but for the oblate QD.

in systems showing a deviation from the spherical geometry, such as the spheroidal cases
discussed here, the Raman selection rules allow interface phonons with m = 0, l = even
number. Therefore, we are led to infer that a consistent explanation for the small shoulder
in some line-shapes of the Raman spectra [22] can only be observed for those samples that
display a certain degree r > 1 of deviation from the purely spherical geometry. For example,
following the data taken from [7], a CdSe QD with a mean radius of 2.6 nm presents a Raman
line-shape with a ‘shoulder’ maximum at ≈188 cm−1. This structure can be explained by
arguing that the SO phonon frequency with l = 2 and m = 0 involves a prolate QD with a
ratio r = 1.07.
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Appendix

We here report the parameters f P
lm as a function of x = 1/ξ0 for several values of l, m in the

case of the prolate ellipsoid:

f P
10 = (1 − x2)v(x) − x

(1 − x2)v(x) − x(1 − x2)
(A.1)

f P
11 = x(1 − 2x2) − (1 − x2)v(x)

x − (1 − x2)v(x)
(A.2)

f P
20 = (1 − x2)v(x) + (2x2/3 − 1)x

(1 − x2)v(x) − 3x(1 − x2)/(3 − x2)
(A.3)

f P
21 = x(6 − 7x2)/(2 − x2) − 3(1 − x2)v(x)

(3 − 2x2)x − 3(1 − x2)v(x)
(A.4)

f P
22 = 6(1 − x2)v(x) − 2x(4x4 − 5x2 + 3)/(1 − x2)

6(1 − x2)v(x) − 2x(3 − 5x2)/(1 − x2)
(A.5)

f P
30 = 2(5 − 3x2)v(x) + 2x(13x2 − 15)(5 − 3x2)/(3(1 − x2)(5 − x2))

2(5 − 3x2)v(x) − 10x + 8x3/3
(A.6)

f P
31 = 5x(31 − 11x2)/4 + x(25 − 42x2 + 9x4)/(4(1 − x2)) − 3(15 − 11x2)v(x)

10x(15 − 11x2)/(5 − x2) + x(5 − 3x2)(15 − 11x2)/((1 − x2)(5 − x2))
(A.7)

f P
32 = 15(1 − x2)v(x) − (45x − 90x3 + 49x5)/(3 − 4x2 + x4)

15(1 − x2)v(x) − (15x − 25x3 + 8x5)/(1 − x2)
(A.8)

f P
33 = 15(x2 − 1)3v(x) + x(15 − 40x2 + 33x4 − 16x6)

15(x2 − 1)3v(x) + x(15 − 40x2 + 33x4)
(A.9)

where v(x) = ln[(1 + x)/(1 − x)]. The corresponding parameters f O
lm for the oblate ellipsoid

are easily obtained by means of the transformation x → −ix and taking into account that

1

2
ln

(
1 − ix

1 + ix

)
= −i tan−1 x.
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